Efficient Local Search for Large Scale Combinatorial Problems

Mirsad Buljubašić, Michel Vasquez

Ecole des Mines d’Ales
LGI2P Research Center

June 27 2013
Overview

Thesis Info

Introduction

Local Search

Problems Definition

What is done
Title: *Efficient Local Search for Large Scale Combinatorial Problems*

Advisor: *Michel Vasquez*, Ecole des Mines d’Ales, LGI2P

Co-advisor: *Haris Gavranović*, International University of Sarajevo

Start date: *December 1st 2012*

Contrat: Ecole des Mines d’Ales
Combinatorial problems - finding values for discrete variables such that:

- certain conditions are satisfied and
- objective function is optimized (minimized or maximized)

The aim of the thesis

Develop an efficient local search algorithms for few large scale combinatorial optimization problems

Problems:

1. Real World Vehicle Routing Problems (VRP) - the main problem
2. Machine Reassignment Problem (MRP)
3. Generalized Assignment Problem (GAP)
4. Bin Packing Problem (BPP)
5. Large Scale Energy Management Problem (LSEM)
Introduction

Combinatorial problems - finding values for discrete variables such that:

- certain conditions are satisfied and
- objective function is optimized (minimized or maximized)

The aim of the thesis

Develop an efficient local search algorithms for few large scale combinatorial optimization problems

Problems:

1. Real World Vehicle Routing Problems (VRP) - the main problem
2. Machine Reassignment Problem (MRP)
3. Generalized Assignment Problem (GAP)
4. Bin Packing Problem (BPP)
5. Large Scale Energy Management Problem (LSEM)
Overview Thesis Info Introduction Local Search Problems Definition What is done

Introduction

Combinatorial problems - finding values for discrete variables such that:
- certain conditions are satisfied and
- objective function is optimized (minimized or maximized)

The aim of the thesis

Develop an efficient local search algorithms for few large scale combinatorial optimization problems

Problems:
1. Real World Vehicle Routing Problems (VRP) - the main problem
2. Machine Reassignment Problem (MRP)
3. Generalized Assignment Problem (GAP)
4. Bin Packing Problem (BPP)
5. Large Scale Energy Management Problem (LSEM)
Local Search

Local search – iterative heuristic

- move from solution to solution in the space of candidate solutions (the search space) by applying local changes, until a solution deemed optimal is found or a time bound is elapsed.

Algorithm 1 Local Search

1. Select an initial state $s_0 \in S$
2. while stopping criteria do
3. Select, by some heuristic, $s \in N(s_0)$ such that $f(s) < f(s_0)$
4. Replace s_0 by s
5. end while

- S – the set of possible states (solutions)
- $N(s)$ – neighborhood, the set of states that can be reached from s in one step
- $f(s)$ – objective function, a value that represents the quality of the state s
Local Search

Local search – iterative heuristic

- move from solution to solution in the space of candidate solutions (the search space) by applying local changes, until a solution deemed optimal is found or a time bound is elapsed.

Algorithm 1 Local Search

1. Select an initial state $s_0 \in S$
2. **while** stopping criteria **do**
3. Select, by some heuristic, $s \in N(s_0)$ such that $f(s) < f(s_0)$
4. Replace s_0 by s
5. **end while**

- S – the set of possible states (solutions)
- $N(s)$ – neighborhood, the set of states that can be reached from s in one step
- $f(s)$ – objective function, a value that represents the quality of the state s
Vehicle Routing Problem (VRP)

- distribution of goods between depots and final users

- Standard objective - minimizing the total travel distance

- Various constraints

- Every customer must be visited exactly once by a vehicle
Real world vehicle routing problems

- many constraints (drivers regulations, traffic constraints, heterogeneous fleet, hired drivers or vehicles,...)
- usually a hierarchical objective function (travel distance, travel time, waiting time, ...)

The main problem to be solved is provided by Geoconcept company
- large scale problem with up to tens of thousands customers
- huge number of different (hard and soft) constraints

The solution approach:
- constraint programming - for constraints satisfaction
- local search - for optimizing the solution
VRP cont.

Real world vehicle routing problems

- many constraints (drivers regulations, traffic constraints, heterogeneous fleet, hired drivers or vehicles, ...)
- usually a hierarchical objective function (travel distance, travel time, waiting time, ...)

The main problem to be solved is provided by Geoconcept company

- large scale problem with up to tens of thousands customers
- huge number of different (hard and soft) constraints

The solution approach:

- constraint programming - for constraints satisfaction
- local search - for optimizing the solution
VRP cont.

Real world vehicle routing problems

- many constraints (drivers regulations, traffic constraints, heterogeneous fleet, hired drivers or vehicles,...)
- usually a hierarchical objective function (travel distance, travel time, waiting time, ...)

The main problem to be solved is provided by Geoconcept company

- large scale problem with up to tens of thousands customers
- huge number of different (hard and soft) constraints

The solution approach:

- constraint programming - for constraints satisfaction
- local search - for optimizing the solution
Google Machine Reassignment Problem (GMRP)

- challenging and novel optimization problem
- maximizing the usage of a set of machines
- assign processes on machines
- resource constraints
- up to 50,000 processes and 5,000 machines
- ROADEF/EURO Challenge 2012
Generalized Assignment Problem - GAP

- maximizing the usage of a set of machines
- assign jobs to agents (processes to machines)
- the agents have a resource capacity which is consumed by job processing
- each job is assigned to exactly one agent
- find a minimum cost assignment of jobs to agents
- Multi-Resource Generalized Assignment Problem (MRGAP)
- MRP is a generalization of MRGAP
Bin Packing Problem - BPP

- minimize the number of bins to pack the objects
- each object has the size
- identical bins (identical capacities)
- each object is assigned to exactly one bin
- Multi-Capacity Bin Packing (MCBPP)
- MRP is a generalization of MCBPP

Solving: Reduce BPP to MRP
Electricité de France (EDF)

60 nuclear power plants

- outages and production planning
- planning problem is very hard to solve
- ROADEF/EURO Challenge 2010
- 120 production scenarios
- time horizon: 1-5 years
- large number of constraints
• bibliography on VRP variants

• CVRP – Capacitated Vehicle Routing Problem
 • implementing basic classes in C++
 • implementing classical constructive heuristics (Savings - Clark-Wright, Insertion, ...)
 • constructive heuristic using matching
 • simple improvement procedures : 2-opt, 3-opt, insertion, swap, ...

• RVRP – Rich Vehicle Routing Problems
 • bibliography on RVRP (real world VRP, many side constraints, ...)
 • implementing basic classes in C++
 • collecting and analyzing data
• bibliography on VRP variants

• CVRP – Capacitated Vehicle Routing Problem
 • implementing basic classes in C++
 • implementing classical constructive heuristics (Savings - Clark-Wright, Insertion, ...)
 • constructive heuristic using matching
 • simple improvement procedures : 2-opt, 3-opt, insertion, swap, ...

• RVRP – Rich Vehicle Routing Problems
 • bibliography on RVRP (real world VRP, many side constraints, ...)
 • implementing basic classes in C++
 • collecting and analyzing data
VRP

- bibliography on VRP variants

- CVRP – Capacitated Vehicle Routing Problem
 - implementing basic classes in C++
 - implementing classical constructive heuristics (Savings - Clark-Wright, Insertion, ...)
 - constructive heuristic using matching
 - simple improvement procedures: 2-opt, 3-opt, insertion, swap, ...

- RVRP – Rich Vehicle Routing Problems
 - bibliography on RVRP (real world VRP, many side constraints, ...)
 - implementing basic classes in C++
 - collecting and analyzing data
Set Covering

GRASP approach for Set Covering (combined with Tabu Search)

- satisfiable results

GRASP - greedy + local search

Writing the chapter on Greedy Randomized Adaptive Search Procedure (GRASP) approach for the book "Metaheuristiques pour l’optimisation difficile"

- Michel Vasquez, Mirsad Buljubašić : Une procedure de recherche iterative en deux phases : la methode GRASP
Set Covering

GRASP approach for Set Covering (combined with Tabu Search)

- satisfiable results

GRASP - greedy + local search

Writing the chapter on Greedy Randomized Adaptive Search Procedure (GRASP) approach for the book "Metaheuristiques pour l’optimisation difficile"

- Michel Vasquez, Mirsad Buljubašić : Une procedure de recherche iterative en deux phases : la methode GRASP
Other

- submitting a paper on Machine Reassignment problem (MRP)
 - **Mirsad Buljubašić, Haris Gavranović: An Efficient Multi-Start Local Search with Noising Strategy for Google Machine Reassignment problem**

- submitting a paper on Large Scale Energy Management problem (LSEM)
 - **Mirsad Buljubašić, Haris Gavranović: Orchestrating CSP and Local Search to Solve a Large Scale Energy Management Problem**

- Bin Packing Problem
 - transforming to MRP
 - testing on instances from literature
 - **todo**: improve the algorithm, submit a paper
Other

- submitting a paper on Machine Reassignment problem (MRP)

- submitting a paper on Large Scale Energy Management problem (LSEM)
 - Mirsad Buljubašić, Haris Gavranović: Orchestrating CSP and Local Search to Solve a Large Scale Energy Management Problem

- Bin Packing Problem
 - transforming to MRP
 - testing on instances from literature
 - todo: improve the algorithm, submit a paper
Other

• submitting a paper on Machine Reassignment problem (MRP)
 • *Mirsad Buljubašić, Haris Gavranović: An Efficient Multi-Start Local Search with Noising Strategy for Google Machine Reassignment problem*

• submitting a paper on Large Scale Energy Management problem (LSEM)
 • *Mirsad Buljubašić, Haris Gavranović: Orchestrating CSP and Local Search to Solve a Large Scale Energy Management Problem*

• Bin Packing Problem
 • transforming to MRP
 • testing on instances from literature
 • todo: improve the algorithm, submit a paper
Thanks!